Copied to
clipboard

G = C42.275C23order 128 = 27

136th non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.275C23, D8:5(C2xC4), (C4xD8):28C2, C8:C22:5C4, C4.77(C4xD4), D8:C4:2C2, C4:C4.398D4, (C4xC8):21C22, SD16:3(C2xC4), C2.3(D4oD8), (C4xD4):1C22, C8.2(C22xC4), (C4xQ8):1C22, (C4xSD16):13C2, M4(2):9(C2xC4), C4.23(C23xC4), D4.6(C22xC4), C22.16(C4xD4), C2.D8:66C22, C4.Q8:46C22, C8:C4:37C22, SD16:C4:1C2, Q8.6(C22xC4), C4:C4.363C23, C8o2M4(2):4C2, (C2xC4).203C24, (C2xC8).414C23, C22:C4.185D4, C2.4(D4oSD16), C23.435(C2xD4), D4:C4:99C22, C22.11C24:7C2, Q8:C4:92C22, (C2xD8).158C22, (C2xD4).372C23, (C2xQ8).345C23, M4(2):C4:10C2, C23.24D4:38C2, (C22xC8).440C22, (C22xC4).924C23, C22.147(C22xD4), C23.33C23:4C2, C42:C2.80C22, (C2xSD16).109C22, (C22xD4).321C22, (C2xM4(2)).260C22, C2.63(C2xC4xD4), C4oD4:4(C2xC4), (C2xD4):26(C2xC4), C4.11(C2xC4oD4), (C2xC4).910(C2xD4), (C2xC8:C22).9C2, (C2xD4:C4):52C2, (C2xC4).70(C22xC4), (C2xC4).474(C4oD4), (C2xC4:C4).574C22, (C2xC4oD4).87C22, SmallGroup(128,1678)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C42.275C23
C1C2C22C2xC4C22xC4C42:C2C22.11C24 — C42.275C23
C1C2C4 — C42.275C23
C1C22C42:C2 — C42.275C23
C1C2C2C2xC4 — C42.275C23

Generators and relations for C42.275C23
 G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=a2, ab=ba, ac=ca, ad=da, eae=ab2, cbc-1=dbd=b-1, be=eb, dcd=bc, ce=ec, de=ed >

Subgroups: 476 in 253 conjugacy classes, 140 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C42, C42, C22:C4, C22:C4, C4:C4, C4:C4, C4:C4, C2xC8, C2xC8, C2xC8, M4(2), D8, SD16, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C2xQ8, C4oD4, C4oD4, C24, C4xC8, C8:C4, D4:C4, D4:C4, Q8:C4, C4.Q8, C2.D8, C2xC22:C4, C2xC4:C4, C2xC4:C4, C42:C2, C42:C2, C4xD4, C4xD4, C4xQ8, C22xC8, C2xM4(2), C2xD8, C2xSD16, C8:C22, C22xD4, C2xC4oD4, C8o2M4(2), C2xD4:C4, C23.24D4, M4(2):C4, C4xD8, C4xSD16, SD16:C4, D8:C4, C22.11C24, C23.33C23, C2xC8:C22, C42.275C23
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22xC4, C2xD4, C4oD4, C24, C4xD4, C23xC4, C22xD4, C2xC4oD4, C2xC4xD4, D4oD8, D4oSD16, C42.275C23

Smallest permutation representation of C42.275C23
On 32 points
Generators in S32
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 19 15 5)(2 20 16 6)(3 17 13 7)(4 18 14 8)(9 22 25 30)(10 23 26 31)(11 24 27 32)(12 21 28 29)
(1 21 3 23)(2 22 4 24)(5 28 7 26)(6 25 8 27)(9 18 11 20)(10 19 12 17)(13 31 15 29)(14 32 16 30)
(5 19)(6 20)(7 17)(8 18)(9 22)(10 23)(11 24)(12 21)(25 30)(26 31)(27 32)(28 29)
(1 3)(2 14)(4 16)(5 7)(6 18)(8 20)(9 27)(10 12)(11 25)(13 15)(17 19)(21 23)(22 32)(24 30)(26 28)(29 31)

G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19,15,5)(2,20,16,6)(3,17,13,7)(4,18,14,8)(9,22,25,30)(10,23,26,31)(11,24,27,32)(12,21,28,29), (1,21,3,23)(2,22,4,24)(5,28,7,26)(6,25,8,27)(9,18,11,20)(10,19,12,17)(13,31,15,29)(14,32,16,30), (5,19)(6,20)(7,17)(8,18)(9,22)(10,23)(11,24)(12,21)(25,30)(26,31)(27,32)(28,29), (1,3)(2,14)(4,16)(5,7)(6,18)(8,20)(9,27)(10,12)(11,25)(13,15)(17,19)(21,23)(22,32)(24,30)(26,28)(29,31)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19,15,5)(2,20,16,6)(3,17,13,7)(4,18,14,8)(9,22,25,30)(10,23,26,31)(11,24,27,32)(12,21,28,29), (1,21,3,23)(2,22,4,24)(5,28,7,26)(6,25,8,27)(9,18,11,20)(10,19,12,17)(13,31,15,29)(14,32,16,30), (5,19)(6,20)(7,17)(8,18)(9,22)(10,23)(11,24)(12,21)(25,30)(26,31)(27,32)(28,29), (1,3)(2,14)(4,16)(5,7)(6,18)(8,20)(9,27)(10,12)(11,25)(13,15)(17,19)(21,23)(22,32)(24,30)(26,28)(29,31) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,19,15,5),(2,20,16,6),(3,17,13,7),(4,18,14,8),(9,22,25,30),(10,23,26,31),(11,24,27,32),(12,21,28,29)], [(1,21,3,23),(2,22,4,24),(5,28,7,26),(6,25,8,27),(9,18,11,20),(10,19,12,17),(13,31,15,29),(14,32,16,30)], [(5,19),(6,20),(7,17),(8,18),(9,22),(10,23),(11,24),(12,21),(25,30),(26,31),(27,32),(28,29)], [(1,3),(2,14),(4,16),(5,7),(6,18),(8,20),(9,27),(10,12),(11,25),(13,15),(17,19),(21,23),(22,32),(24,30),(26,28),(29,31)]])

44 conjugacy classes

class 1 2A2B2C2D2E2F···2K4A···4L4M···4V8A8B8C8D8E···8J
order1222222···24···44···488888···8
size1111224···42···24···422224···4

44 irreducible representations

dim111111111111122244
type+++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C4D4D4C4oD4D4oD8D4oSD16
kernelC42.275C23C8o2M4(2)C2xD4:C4C23.24D4M4(2):C4C4xD8C4xSD16SD16:C4D8:C4C22.11C24C23.33C23C2xC8:C22C8:C22C22:C4C4:C4C2xC4C2C2
# reps1111122221111622422

Matrix representation of C42.275C23 in GL6(F17)

400000
040000
000010
000001
0016000
0001600
,
1600000
0160000
000100
0016000
000001
0000160
,
1020000
970000
0012500
005500
0000125
000055
,
100000
7160000
001000
0001600
000010
0000016
,
1600000
0160000
0016000
0001600
000010
000001

G:=sub<GL(6,GF(17))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,0,1,0,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[10,9,0,0,0,0,2,7,0,0,0,0,0,0,12,5,0,0,0,0,5,5,0,0,0,0,0,0,12,5,0,0,0,0,5,5],[1,7,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C42.275C23 in GAP, Magma, Sage, TeX

C_4^2._{275}C_2^3
% in TeX

G:=Group("C4^2.275C2^3");
// GroupNames label

G:=SmallGroup(128,1678);
// by ID

G=gap.SmallGroup(128,1678);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,184,521,2804,1411,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=a^2,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a*b^2,c*b*c^-1=d*b*d=b^-1,b*e=e*b,d*c*d=b*c,c*e=e*c,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<