p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.275C23, D8:5(C2xC4), (C4xD8):28C2, C8:C22:5C4, C4.77(C4xD4), D8:C4:2C2, C4:C4.398D4, (C4xC8):21C22, SD16:3(C2xC4), C2.3(D4oD8), (C4xD4):1C22, C8.2(C22xC4), (C4xQ8):1C22, (C4xSD16):13C2, M4(2):9(C2xC4), C4.23(C23xC4), D4.6(C22xC4), C22.16(C4xD4), C2.D8:66C22, C4.Q8:46C22, C8:C4:37C22, SD16:C4:1C2, Q8.6(C22xC4), C4:C4.363C23, C8o2M4(2):4C2, (C2xC4).203C24, (C2xC8).414C23, C22:C4.185D4, C2.4(D4oSD16), C23.435(C2xD4), D4:C4:99C22, C22.11C24:7C2, Q8:C4:92C22, (C2xD8).158C22, (C2xD4).372C23, (C2xQ8).345C23, M4(2):C4:10C2, C23.24D4:38C2, (C22xC8).440C22, (C22xC4).924C23, C22.147(C22xD4), C23.33C23:4C2, C42:C2.80C22, (C2xSD16).109C22, (C22xD4).321C22, (C2xM4(2)).260C22, C2.63(C2xC4xD4), C4oD4:4(C2xC4), (C2xD4):26(C2xC4), C4.11(C2xC4oD4), (C2xC4).910(C2xD4), (C2xC8:C22).9C2, (C2xD4:C4):52C2, (C2xC4).70(C22xC4), (C2xC4).474(C4oD4), (C2xC4:C4).574C22, (C2xC4oD4).87C22, SmallGroup(128,1678)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.275C23
G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=a2, ab=ba, ac=ca, ad=da, eae=ab2, cbc-1=dbd=b-1, be=eb, dcd=bc, ce=ec, de=ed >
Subgroups: 476 in 253 conjugacy classes, 140 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C42, C42, C22:C4, C22:C4, C4:C4, C4:C4, C4:C4, C2xC8, C2xC8, C2xC8, M4(2), D8, SD16, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C2xQ8, C4oD4, C4oD4, C24, C4xC8, C8:C4, D4:C4, D4:C4, Q8:C4, C4.Q8, C2.D8, C2xC22:C4, C2xC4:C4, C2xC4:C4, C42:C2, C42:C2, C4xD4, C4xD4, C4xQ8, C22xC8, C2xM4(2), C2xD8, C2xSD16, C8:C22, C22xD4, C2xC4oD4, C8o2M4(2), C2xD4:C4, C23.24D4, M4(2):C4, C4xD8, C4xSD16, SD16:C4, D8:C4, C22.11C24, C23.33C23, C2xC8:C22, C42.275C23
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22xC4, C2xD4, C4oD4, C24, C4xD4, C23xC4, C22xD4, C2xC4oD4, C2xC4xD4, D4oD8, D4oSD16, C42.275C23
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 19 15 5)(2 20 16 6)(3 17 13 7)(4 18 14 8)(9 22 25 30)(10 23 26 31)(11 24 27 32)(12 21 28 29)
(1 21 3 23)(2 22 4 24)(5 28 7 26)(6 25 8 27)(9 18 11 20)(10 19 12 17)(13 31 15 29)(14 32 16 30)
(5 19)(6 20)(7 17)(8 18)(9 22)(10 23)(11 24)(12 21)(25 30)(26 31)(27 32)(28 29)
(1 3)(2 14)(4 16)(5 7)(6 18)(8 20)(9 27)(10 12)(11 25)(13 15)(17 19)(21 23)(22 32)(24 30)(26 28)(29 31)
G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19,15,5)(2,20,16,6)(3,17,13,7)(4,18,14,8)(9,22,25,30)(10,23,26,31)(11,24,27,32)(12,21,28,29), (1,21,3,23)(2,22,4,24)(5,28,7,26)(6,25,8,27)(9,18,11,20)(10,19,12,17)(13,31,15,29)(14,32,16,30), (5,19)(6,20)(7,17)(8,18)(9,22)(10,23)(11,24)(12,21)(25,30)(26,31)(27,32)(28,29), (1,3)(2,14)(4,16)(5,7)(6,18)(8,20)(9,27)(10,12)(11,25)(13,15)(17,19)(21,23)(22,32)(24,30)(26,28)(29,31)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19,15,5)(2,20,16,6)(3,17,13,7)(4,18,14,8)(9,22,25,30)(10,23,26,31)(11,24,27,32)(12,21,28,29), (1,21,3,23)(2,22,4,24)(5,28,7,26)(6,25,8,27)(9,18,11,20)(10,19,12,17)(13,31,15,29)(14,32,16,30), (5,19)(6,20)(7,17)(8,18)(9,22)(10,23)(11,24)(12,21)(25,30)(26,31)(27,32)(28,29), (1,3)(2,14)(4,16)(5,7)(6,18)(8,20)(9,27)(10,12)(11,25)(13,15)(17,19)(21,23)(22,32)(24,30)(26,28)(29,31) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,19,15,5),(2,20,16,6),(3,17,13,7),(4,18,14,8),(9,22,25,30),(10,23,26,31),(11,24,27,32),(12,21,28,29)], [(1,21,3,23),(2,22,4,24),(5,28,7,26),(6,25,8,27),(9,18,11,20),(10,19,12,17),(13,31,15,29),(14,32,16,30)], [(5,19),(6,20),(7,17),(8,18),(9,22),(10,23),(11,24),(12,21),(25,30),(26,31),(27,32),(28,29)], [(1,3),(2,14),(4,16),(5,7),(6,18),(8,20),(9,27),(10,12),(11,25),(13,15),(17,19),(21,23),(22,32),(24,30),(26,28),(29,31)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2K | 4A | ··· | 4L | 4M | ··· | 4V | 8A | 8B | 8C | 8D | 8E | ··· | 8J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | C4oD4 | D4oD8 | D4oSD16 |
kernel | C42.275C23 | C8o2M4(2) | C2xD4:C4 | C23.24D4 | M4(2):C4 | C4xD8 | C4xSD16 | SD16:C4 | D8:C4 | C22.11C24 | C23.33C23 | C2xC8:C22 | C8:C22 | C22:C4 | C4:C4 | C2xC4 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 16 | 2 | 2 | 4 | 2 | 2 |
Matrix representation of C42.275C23 ►in GL6(F17)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
10 | 2 | 0 | 0 | 0 | 0 |
9 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 5 | 0 | 0 |
0 | 0 | 5 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 5 |
0 | 0 | 0 | 0 | 5 | 5 |
1 | 0 | 0 | 0 | 0 | 0 |
7 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(17))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,0,1,0,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[10,9,0,0,0,0,2,7,0,0,0,0,0,0,12,5,0,0,0,0,5,5,0,0,0,0,0,0,12,5,0,0,0,0,5,5],[1,7,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C42.275C23 in GAP, Magma, Sage, TeX
C_4^2._{275}C_2^3
% in TeX
G:=Group("C4^2.275C2^3");
// GroupNames label
G:=SmallGroup(128,1678);
// by ID
G=gap.SmallGroup(128,1678);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,184,521,2804,1411,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=a^2,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a*b^2,c*b*c^-1=d*b*d=b^-1,b*e=e*b,d*c*d=b*c,c*e=e*c,d*e=e*d>;
// generators/relations